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Delayed feedback control of chaos: Bifurcation analysis
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We study the effect of time delayed feedback control in the form proposed by Pyragas on deterministic chaos
in the Rossler system. We reveal the general bifurcation diagram in the parameter plane of timeatelay
feedback strengtK which allows one to explain the phenomena that have been discovered in some previous
works. We show that the bifurcation diagram has essentially a multileaf structure that constitutes multistability:
the larger ther, the larger the number of attractors that can coexist in the phase space. Feedback induces a large
variety of regimes nonexistent in the original system, among them tori and chaotic attractors born from them.
Finally, we estimate how the parameters of delayed feedback influence the periods of limit cycles in the
system.
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|. INTRODUCTION of K at which the control can be achieved: on the lower

. _ boundary which is always larger than zero the stabilized or-
The problem of control of oscillatory behavior is of long bit undergoes a period-doubling bifurcation, while on the

s_tandmg. Us_ually, whe_neve_r an irregular, un_pred|cta_ble mo[;pper boundary a torus is born from it. Later, this simple
tion occurs in an engineering or technological device, the : : n
approach was extended to multiple time delays R

need arises to take some action in order to turn it into . )
: . ) - <
predictable one or to stop any oscillations altogether. Wltﬁxﬂt n7) with some memory parametff| <1 [11], which

the progress of nonlinear dynamics, intelligent chaos contrci)lngoges I?gg foﬁfﬁﬂﬁqybg: g??g;ﬁluvi]c')r%ow;()st)clgﬂgﬁ \r/]:r\i/gus
methods have been developed that exploit the existence e PP P

unstable periodic orbit§UPQO’s) embedded into chaotic at- areas of physics, chemistry, and .b'OI.dgﬁ_zﬂ' R_ecent In-
tractors[1-4]. The general idea is to turn an unstable orbittereSt has focused upon the application to sangIIy extended
ystems, and a variety of global and local coupling schemes

into a stable one by applying some small force, and a variet%f the control force have been investigated. e.g., Refs
of ways to do this have been proposed so far. Among th 22-26. Extensions to spatiotemporal filtering have been

most prominent ones is the Ott-Grebogi-Yorik@GY) ap- - )
: : : used to demonstrate that the efficiency can even be increased
proach[5] that suggests to wait until the phase tra]ectoryby several orders of magnitud@7.28. However, in this

reaches a sufficiently small vicinity of the target saddle orbit, X ) .
and then apply a small feedback force that would push i ork we will restrict ourselves to the simplest control
scheme provided by Eql).

towards the orbit along its stable manifold. With all the The Pvr roach i iall lina for experi-
beauty of the idea, this approach requires quite a lot of € Fyragas approach Is especially appeaiing for expe

. L o ... mentalists, since one does not need to know anything about
knowledge about the orbit including its position and stab|I|tythe target orbit beyond its peridd Note that ifr i gqualgto

properties that are not always straightforward to find in aT precisely, once the target orbit is reached, the control force

real-life situation. A famous approach that is lacking the ™. ) 4 ) X
above shortcoming but achieves the same goal was proposgan'SheS' That is why this type of control is calkedninva-

by Pyragaq6]. It uses a delayed feedback in the form of asve However, i.n an experimental lsitu'ation the dynamical
signal (1) that is proportional to the difference between equations describing the given oscillations are typically not

some functiong of the current system statet) and of its known, and the period of the target orbit may be estimated
g . . y_ using a kind of spectroscopy approach: one applies the feed-
statex(t—7) somer time units ago:

back with values ofr from a substantially large range, and
F(t) =g(x(t) - g(x(t - 1), (1)  estimates the control forcg for eachr. If 7is close to the
period of the UPO, the absolute value of control fotEe
multiplied by a feedback strengta If 7is precisely equal to averaged over time approaches zero. Of course, due to the
the periodT of the UPO, the orbit may become stable underfinite resolution inz, the control force will never vanish, and
the appropriate choice of feedback strenigtiNote that only  the accuracy of the thus determined value of the pefiod
the stability properties of the orbit are changed, while thedepends upon the sampling resolution of theange. It has
orbit itself and its period remain unaltered. The conditionsbeen shown numerically, however, thatrifs not equal, but
for K for successful control have been thoroughly studied inclose enough td, the orbit changes both its shape and pe-
Refs.[7-10). Namely, it has been shown that if the orbit hasriod. In Ref.[29] a method was proposed to find a better
an odd number of real Floquet multipliers greater than unityestimate forT from the knowledge of the periods of the
the delayed feedback can never stabilize it. Also, for thestable periodic orbits at two different values ef The
orbits that can be stabilized, there is a finite range of valuemethod works well if the two values af which are chosen
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by an initial guess, are close enoughTpbut its accuracy
decreases if they are far from Interestingly, already in Ref.
[6] it has been reported that delayed feedback can suppress

oscillations and also induce multistability for sufficiently 305
largeK. 204
The existing works on delayed feedback control generally 7z ‘
analyze two complementary casén: K is fixed while 7 is 107
changed, ofii) =T is fixed whileK is changed. In spite of 0
the large number of works on delayed feedback control that -10

reveal a variety of phenomena in systems being controlled,

the general bifurcation scenarios realized under variation of

feedback parameters are still unknown even for the simplest

low-dimensional chaotic systems and the simplest form o ) = ) N

feedback. One of the practical goals of the current work is tg.". (2 Without delayed feedbackk=0), gray line (red online:
. LS - eriod-1 unstable periodic orbit, black lirielack onling: period-2

assess the accuracy with which it is sufficient to know the’ L .

. . unstable periodic orbit.
target orbit periodT to allow for successful control. We

would also like to find out how the range of allowedde-  though the linear expansion becomes exact only for a special
pends orK: we suggest that a suitably chosértan broaden  ¢oupling of the control force in the form of a unity matrix
the allowedr range. Exploration of how oscillations can be (diagonal coupling, this general bifurcation behavior has
damped would be potentially useful in engineering applicaeen numerically verified in a large number of diverse de-
tions. For this purpose we study the response of a chaotigyed feedback control systems including spatially extended
system to the delayed feedback with parameterand 7 reaction-diffusion systenf®3-25. The feedback scheme we
varying in quite large ranges. We perform a systematic bifury,se in Eqgs(2) is nondiagonal, but in qualitative agreement
cation analysis of the system with delay and find the regiongyith Ref.[9], at K ~0.24 the stable limit cycle undergoes a
of periodic, quasiperiodic, and chaotic motion, as well a eriod-doubling bifurcation, and aK=~2.3 a Neimark-
those where oscillations are absent, and the regions of mjgacker bifurcation.
tistability. In Fig. 2 the hatched area touching the coordinate axes
approximately outlines the region of chaos born through a
cascade of period-doubling bifurcations of the main period-1
Il. SURVEY OF THE BIFURCATION DIAGRAM cycle that is born via a Hopf bifurcation at the borderlines of

We use the Réssler model as a paradigmatic chaotic sy$P€ closed loops marked as black areas. In other words, the
tem to which we apply delayed feedback control. It exhibitsdelayed feedback leads to a cascade of inverse period-

chaotic oscillations born via a cascade of period-doublingioubling bifurcations of chaos ass increased from zero for
bifurcations: a visible range of fixed, or asK is increased from zero for

most values ofr from the range investigated.
x=-y=-z-K[x(t) = x(t- 7], It was first mentioned in Ref6], and later illustrated in
more detail, e.g., in Ref$30,31], that delayed feedback can-
y=x+ay, not only stabilize the originally unstable periodic orbit, but
also, with the appropriate choice efandK, induce the in-
2=b+2(x - ) ) verse I—_|opf bifurcation of this orbit, thus suppressing oscil-
' lations in the system altogether. The same phenomenon oc-
considered at the parameter valaes0.2,b=0.2,4=6.5. All  curs in Egs.(2). In Fig. 2 black shaded loops show the
quantities used in this paper are dimensionless. Witl), at  stability domains of the fixed point close to the origin of
these parameters the attractor of the system is representedghase space, which fé&¢=0 and the parameteesb,u cho-
Fig. 1 by dots. Unstable periodic orbits with periods  sen is an unstable saddle focus with approximate eigenvalues
~5.916 79(“period-1 orbit”) and T,~11.828 14(“period-2  \; ,=a/2*i and\3=-u. That is, inside the black regions no
orbit”) that are embedded into the chaotic attractor are shownscillations occur. Note that the largest such region is situ-
by gray and blacKred and black onlinelines, respectively. ated to the left of, and quite close to, the lineT;. The
In Fig. 2 we display a bifurcation diagram in terms of the loops containing the stable fixed point form a self-similar
parameters andK; the lines7=T; and7=T, are depicted by structure in the K, r) parameter plane, and decrease in size
vertical dash-dotted lines. Application of the delayed feed-as r grows, in full agreement with Ref$30,31].
back with 7=T; and 0.24K<2.3 stabilizes the period-1 The thick black solid lines in Fig. 2 forming loops are the
orbit, and it becomes the only attractor of the system. In Reflines of Hopf bifurcation at which a periodic orbit is born.
[9] it has been predicted analytically by a linear expansiorThe bifurcation diagram has a multileaf structure, and the
that control is realized only in a finite range of the values ofborderlines of different leaves are formed by the segments of
K: at the lower control boundary the limit cycle should un- Hopf bifurcation lines according to the rule illustrated by
dergo a period-doubling bifurcation, and at the upper boundFig. 3. Each leaf is defined as being the one on which the
ary a Hopf bifurcation generating a stable or an unstableame periodic orbit of period one and all attractors born from
torus from a limit cycle(Neimark-Sacker bifurcation Al- it exist and undergo bifurcations. In Fig. 4 it is illustrated

FIG. 1. (Color online Dots: chaotic attractor of Réssler system
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FIG. 2. (Color onling Bifurcation diagram of the Rdssler system with delayed feedback in the plane of feedback parameters: time delay
7 and feedback strengtf. Bifurcation lines of all leaves are shown. A scheme of the leaf structure is given in Fig. 3. For bifurcations on
separate leaves see Fig. 5. Black areas mark the existence of a stable fixed point, which never coexists with any other attractors. Black solid
lines mark Hopf bifurcations of the fixed point, at which a periodic ofsiable or unstabjeis born. White circles mark points of
self-intersection of Hopf bifurcation line. On grayed onling solid lines an unstable limit cycle acquires stability via a subcritical
Neimark-Sacker bifurcation. On grdsed onling dashed lines a stable torus is born from the stable limit cycle via a supercritical Neimark-
Sacker bifurcation. Dotted lines show period-doubling bifurcations of stable limit cycles. On dash-double-dotted lines the attractors undergo
crises and cease to exist. Hatched areas denote chaos born as a result of period-doubling bifurcations or of smoothness loss by the invariant
torus.

how a leaf is determined for a particular value Kf The From Fig. 3 it is clear that for larg& different leaves
sizes of period-1 orbits, quantified by the differencgs,  overlap, and multistability occurs. For the clarity of descrip-
—Xmin Of the x variable, are shown vs for three values oK tion it is convenient to number the leaves. We assign number
indicated in the figure. Each orbit has zero size when it i9 to the leaf that is not complete, i.e., whose left-hand bound-
born (dies via Hopf bifurcation on the left-han@ight-hand ary is formed by the axis=0. Leaf 0 has the simplest struc-
border of the leaf. The range of the orbit existence definesure. Namely, on the line of Hopf bifurcation a periodic orbit
the leaf. Shaded areas mark the stability of each orbit. Thef period one is born from the fixed point. It is born stable in
particular periodic orbit and associated attractors do not exighe lower part of the diagram and unstable above the point at
outside their respective leaf. which the Hopf bifurcation line intersects itsélif/hite circle
Although all relevant bifurcation lines are shown in Fig. in Figs. 2 and % From the latter point a line of subcritical
2, the complexity of the diagram may make it difficult to Neimark-Sacker bifurcation emergéshown by a solid gray
associate each line with the appropriate leaf. For easier visuine in Figs. 2 and 5, leaf)0 as it is crossed from below to
alization we cut out the different leaves and show them sepabove, the unstable periodic orbit acquires stability. With
rately in Fig. 5, where shade@reen onling areas do not this, as this line is crossed from above to below, the limit
belong to the leaf considered. Since all leaves merge focycle loses its stability, but no stable torus is born from it. As
small K, the cutting of separate leaves is done along thehe point in the parameter plane moves towards the axes
arbitrarily selected vertical lines on the diagram that pass-0 and/orK=0, the stable limit cycle undergoes a period-
through the lowest points of the loops of Hopf bifurcation doubling bifurcation. A cascade of period-doubling bifurca-
lines. tions leads to the birth of a chaotic attractor whichra0 or
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two-dimensional toruggray dashed line in Figs. 2 and, ®r
period-doubling bifurcatioridotted ling. It may happen that

the line of subcritical Neimark-Sacker bifurcation is contin-
ued as, or crossed by, a line siipercritical Neimark-Sacker
bifurcation, as happens close to both borders of leaves 1 and
3, to the right-hand border of leaf 2, and to the left-hand
border of leaf 4.

While bifurcations of fixed points and periodic orbits
were detected by means of continuation td&g], transfor-
mations of objects with higher dimensions were detected by
observation of their Poincaré maps that were calculated from
the conditionx=0. The structure of the Rdssler equations is
such that all trajectories on the attractors considered cross the
“FP”" mark the stability regions for the only fixed point of system Plane defined by the above equation. In uncertain cases we
). also calculated Fourier power spectral densities from the

variablex(t).
K=0 becomes the attractor of the systé2h without feed- Generally, as one moves deeper inside the leaf, a stable
back shown in Fig. 1 by dots. An important feature of this tWo-dimensional torus appears, being born from a period-1
leaf is that at larg& on the dash-double-dotted line the limit lIMit cycle as in leaves 1 and 3, or from a period-2 cycle as
cycle vanishes through a crisis, and the trajectory abruptij? 1€af 2, or from a period-4 limit cycle as in leaf 4. Hence

goes to infinity. Thus above the crisis line there are no atlarge portions in the centers of all leaves are the domains of
tracting sets on this leaf. existence of a two-dimensional torus. With this, as param-

To all other leaves we assign positive integer numbers 161€rs are changed inside the latter domains, the two-
2, 3, 4, etc. Although different leaves have generally differenflimensional torus may undergo various bifurcations, e.g., an-
structures, they possess some common features. The periodier Neimark-Sacker bifurcation leading to the birth of a
orbit is born stable below the point at which the Hopf bifur- thrée-dimensional torus, torus doublitgometimes a cas-
cation line intersects itseffwhite circles in Figs. 2 and)s  cade of torus doublingsand merging of torus bande.g.,
and unstable above this point. From the latter point a subfor tori bom from a period-2 or period-4 orhitA torus can
critical Neimark-Sacker bifurcation line emerg@gay solid ~Pecome resonant, i.e., visible in the Poincaré map as the
line in Figs. 2 and § that being crossed in the direction @Ppearance of a discrete number of points in place of a

towards the leaf center renders the originally unstable periclosed circle. However, most commonly, the torus loses its
odic orbit stable. As one moves deeper inside the leaf, th&moothness, breaks down, and turns into a chaotic attractor.

percritical Hopf bifurcation that leads to the birth of a stablethat would allow continuation of objects more complex than
periodic orbits in systems with delay, all bifurcations of tori

FIG. 3. (Color online Sketch of multiple leaf structure of bifur-
cation diagram of systerf2) on the parameter plan&, ). Letters

T were detected by visual inspection of Poincaré maps accom-

2200 5 10 15 20 25 en : : : o
£ ' — panied by calculation of Fourier power spectral densities
lE 1o~ l I l l ll ] E where necessary. An example of this is given in Fig. 6 where
A = e p—p— the transition from a smooth torus to chaos is illustrated for
Leaf 0 Leaf 1 Leaf2 Leaf3  “rneg leaf 2. We fix7 at 13.5 and gradually increakefrom 0.74 to
£20% > > 22 2 2 o 0.78. In Fig. 6 Poincaré sections are shown for three values
ﬁ;.o] J ? of K together with the Fourier power spectral denStyfOne
£ M can see that the two-dimensional torus visualized by a
Losfo WW period-4 invariant closed curve in the Poincaré section
s breaks down giving birth to a chaotic attracting set. This is
5200 5 10 1s 20 25 confirmed by the power spectru® which atK=0.74 is
T ok Q disc_:rete Within_ the numerical accuracy, kt0.76 becomes
E . . gg': enriched by discrete components andKat0.78 becomes
=0 continuous. The transition from a discrete to continuous

Leaf 0 Leaf 1 . .. .
~5 spectrum is clearly visible as small spectral peaks are wid-

e ened substantially.
N The lines of bifurcations of tori are quite dense in the

Leaf 4 parameter plane, and it is impossible to reveal them all

FIG. 4. (Color onling Illustration of how the leaves of the bi- Within reasonable computational effort. For this reason, in
furcation diagram are formed. In each plot the spread oktnari-  this work we only outline the largest domain of chaos born
ableXmax—Xmin @S @ measure of the size of the period-1 orbitris via torus breakdown that was found on leafHatched area
given for a value of feedback strendttthat is indicated to the right in Fig. 5). On leaf 1 the stable two-dimensional torus under-
of the plot. The width of the leaf irr is defined by the range of ~ goes bifurcations only approximately in the upper fifth of the
where the particular orbit has a nonzero size. Inside the shadediagram (not illustrated. On other leaves the chaotic do-
areas the orbit is stable. mains were relatively narrow.
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0 5T, 0 T, 15 20 25
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FIG. 5. (Color onling Separate leaves of the bifurcation diagram of the Rossler system with delayed fe&hmaek in full in Fig. 2.
Shaded graygreen onling areas do not belong to the respective leaf. Lines are denoted in the same way as in Fig. 2.

Importantly, although each leaf is defined by the existencéractors. The lines of crises are shown by dash-double-dotted
of a particular periodic orbit, the attracting sets do not existines in Figs. 2 and 5.
in the whole area of the leaf. E.g., obviously, there are no In particular, the line of crisis of the two-dimensional
attractors in the areas between Hopf and subcritical Neimarktorus of leaf 1 roughly follows the Hopf bifurcation line: as
Sacker bifurcationgsolid black and solid gray lines in Fig. one approaches the crisis line from the left, the torus diam-
5), because the just born periodic orbit is unstable there andter becomes very small as if the torus is about to undergo an
does not create any other attractors yet. With this, the attractaverse supercritical Neimark-Sacker bifurcation. But the lat-
ing sets that are born through local bifurcations of the periter does not happen and instead the torus disappears abruptly.
odic orbit can undergo crises as the parameters are changed,In leaf 2 the chaotic attractor vanishes through a crisis on
and the phase trajectory jumps to one of the coexisting attwo lines that we managed to reveal by numerical simula-

74

FIG. 6. (Color online lllustration of torus
breakdown as a transition to chaos in the Rossler
system with delayed feedback on leaf 2 of the
bifurcation diagram(Fig. 5. Poincaré maps of
attractors and their respective Fourier power
spectral densitys calculated fronx(t) are given
for three values oK at 7=13.5. Each panel illus-
trates a particular value df.

K=0.78 K=0.76 K=0.

“215-10 5 0 0.8 0.84 088 092 096 1 1.04 108 1.12 1.16 1.2
yi @
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K=|0.13,|t incrfI:ases .

K=0.8,7 increases K=2.0,7 increases
@ o 1 ©o ' R : (O ™ N LA
s A ' E: - k. ‘ - 0
ol 3\‘1’1 ¢ " I i FIG. 7. One-parameter bifur-
0 ’ o cation diagrams of systeit2), il-
15 . . s . is i _ -20 lustration of multistability: for
0 3 10 T oo 0 T 7 0 T each fixedK, 7 is first increased
K=0.13, T decreases K=0.8, tidecreases K=2.0,Tdecreases -
o ( ! cases (@25 ases ()10 , o — from zero to 25 and then de
] ' _ creased from 25 to zerda), (b)
= W R .- B K=0.13; (0), () K=0.8; (¢), (f)
< j z\a)/ s X ' 2 i ‘ K=2.0.
-10 -10Q; \
o 1 20 B,
5 10 15 20 5
T

-150

tion. As the line that is oriented mostly vertically is crossed,leaves occur. The same line embraces both the upper and the
the phase trajectory jumps on the attractor of leaf 3. This lindower plot for the same value & in order to emphasize that
was not extended above the upper point shown since thejamps occur at different values afdepending on whether
was no crisis detected for the slightly larger valueskof is being increased or decreased. The larger the valleisf
checked. As the upper line is crossed, the phase trajectotthe larger the gaps im between these jumps are.
jumps on the attractors of leaf 1. This line was also not Also, for potential applications it is interesting how the
extended beyond the limits shown because of the numericahagnitude of the control force depends on the feedback pa-
uncertainties that occurred in the regions investigated. rameters. We define the control forée=F as

Also, attractors of all leaves undergo some crisisKat
close to, or immediately above, the upper line of the Hopf FO =X -x(t-7) 3)

bifurcation (right-hand border of leaf)0at 7 larger than 10.  and calculate the mean valu€E) and the varianceF?)

This crisis is detected in numerical simulation as foIIows:_<F>z of this variable through averaging over the observation
Sti”‘”'”g from an attractor of a certain leaf, as one mcrebises time. The mean value of the control ford€) is zero within
this attractor abruptly vanishes and the trajectory jumps tonumerical accuracy. The plots of the varian@@) of the
the attractor of the preceding leaf. Ksis increased further, Y- P

the current attractor vanishes again. This is repeated un -?ntlr(o:.force ;:ST fcl):rzthre;a vlalueds oK are shown n EI? 8:
leaf 0 is reached. AK is increased further, the attractor of P'aCK lIN€S S owF?) calculated asr was increased from

leaf 0 vanishes and the trajectory goes to infinity. zero to 25, and shaded areas sh@) calculated as was

In order to reconstruct the actual bifurcation diagram, onedecreased from 25 to zero. Hysteresis is clearly visible in
can cut out separate leaves from Fig. 5 leaving out théhese plots, and is due to overlapping of different leaves of
shaded areas, and glue leaves with consecutive numbers #e bifurcation diagram. Segments of finite length wHer®
gether: leaf 1 should be glued to leaf 0 from the right, leaf 2is zero represent the stability domains of the fixed point.
to leaf 1, etc. Points at which{F?) reachegor tends t9 zero are those at

In order to illustrate multistability and the change of re- which 7 coincides with some accuracy with the periods of
gimes along the parameter plane, we plot three oneperiod-1(atK=0.8 andK=2.0) or period-2(atK=0.13 un-
parameter bifurcation diagrams along the lités0.13, K  stable periodic orbits in the original syste(g) that are
=0.8,K=2.0. Points of the projections of the Poincaré mapmarked by vertical dash-dotted lines. One can see that the
onto variablex are plotted versus, as 7 is first increased control force is small in quite large vicinities of these points.
from 0 to 25 (upper panels in Fig.)7 and then decreased Note that with those three arbitrarily selected valueK afe
from 25 to O(lower panels in Fig. )7 Vertical dotted lines are were unable to find orbits whose stability domains in our
put at the values ofr at which jumps between different bifurcation diagram are very small and are not shown, like

nal Al =
T bt
V20 M ) )
38 — FIG. 8. (Color online Variance of control
Ayl a ®Q force F defined by Eq(3) vs 7 for three different
e e values ofK: (a), (b) K=0.13;(c), (d) K=0.8; (e),
Vo M (f) K=2.0. For each fixed value df, 7 is first
U— increased from zero to 2flack line and then
A < decreased from 25 to zershaded gray, green
N 20 N
[0 ) 0 blé onling). Multistability is clearly visible.
V 10f
ol |
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period-3 and period-4 orbits. This spectroscopy approach has OK,n)=T+9,0|n(7-nT) +O((7— nT)?),
been proposed in Refi6] for the use in experiments in order
to estimate the periods of unstable orbits. However, Fig. 8 n=01.... (8)
illustrates that in the presence of multistability that is inevi-
tably induced by delayed feedback, an arbitrary selection ofn this relationship we keep only the linear term and substi-
feedback strengtK does not allow one to reveal all orbits. tute Eq.(7) to obtain an approximate formula for the period
To reveal all orbits, one should in fact scan the system in ®f the delay-influenced orbit:
wide range ofK. K
We note that although one can in principle stabilize a OK, ) ~T+
period-3 periodic orbit whose period T~ 18 and thus falls nK -«
within the 7 limits we consider, the range of its stability Over 1,5 in order to find the period of the controlled orbit, be-
both K and 7 is very small, and we do not show it in this gjyeq the control parametefsand ~ one needs to know also
work. the period of the unperturbed orbit and the parametex
that characterizes the integral effect of the feedback on the
[ll. ESTIMATION OF PERIODS OF LIMIT CYCLES system that does not depend kKrand 7 for the given orbit.
. . ) If T could be somehow revealed from the response of the
In practice it is often desirable to know in advance thesystem to delayed feedback over a wide range of values of
outcome of appllcatlon of delayed feedback to the_ partlcula[6], the calculation ofx appears to be a difficult problem
system. That includes the knowledge of the period of th§,q] Moreover, for each new orbit this parameter will be
resulting stable orbit. In order to estimate how the paramyiferent. However, the situation is a bit simplified by the
ete_rsK and 7 of delayed feedback influe_nce the period of this 5yseryvation that if an orbit of periodl is characterized by a
orbit, we use an approach suggested in R29], where the parameterk=k;, then the parameter for the orbit of period
following relationship for the resulting limit cycle of period mT, m=1,2...., will be x,,=x,/m. This feature ofk follows
O(K,7) in the system with delayed feedback has been defom Eq. (4) and the definition of the functio®(K , ), ac-
rived: cording to which®(K,T)=0(K,mT)=T. Using the above
10,0 1+ TKA, (10)] 1= 0. 4) g:ca;eerrr;sg{tnag(r)l;/\i{[ss.one to generalize the form(@)ato the case

(r=nT), n=0,1,2... (9

Here the operataf, denotes the derivative with respectto K

x is a system parameter characterizing the effect of the con- 0K, =mT+ ———(7—nm7),

trol force on the system dynamics, which does not depend on nK - «/m

K and 7 for a given controlled orbitT denotes the period of

the unperturbed orbit @ =0. Following the derivation in n=0,1,2,.., m=1,2..., (10

Ref.[29], one can show that all statements obtained there for . .
7=T remain valid also forr=nT wheren is a non-negative whereT and « correspond to the period-1 orbit. We note that

integer. The argument is that if the initial conditions are set{he orbit with period precisely equal T might not exist in

precisely on the orbit with period, the control forceF(t) he_ or|g_|nal system. However, it IS very likely that some
z . _ .. orbits with periods close tT do exist, and thus we expect
=x(t)—x(t-17) is zero for anyr=nT. Hence we can rewrite

Eq. (4) as that the derived relationship holds approximately.

:0'

=nT

1
K(?T®|T’=HT+ TK ( )

To check the formuld10) we numerically calculate peri-
- - ods of different orbits for a variety of values &f and 7.
€00zt + TKI, (10)] znr =0, n=0.1,2.. (5 First, we estimate the perioH of the period-1 orbit without
or as control. In our case it appears to Be=5.916 79. In Fig. 9
the dependences of periods of period-1 orlfitat can be
T stable or unstab)eon time delayr are presented for three
ﬁnT_TK @‘7@ different values ofK. Black circles show the periods esti-
mated numerically for period-1 orbits from different leaves
of the bifurcation diagraniFigs. 2 and & Periods calculated
n=012... (6) using formula(10) are denoted by grayred onling lines.
P _ : With this, different lines were found for different values of
Taking into account tha®(K,nT) =T, we find n=0,1,2,3,4. As it was mentioned above, the parametisr
k0.0 1+ K-nKd,®| _,r=0, n=0,1,2.., not easy to find using the_ analytic expressions pr_ovi_ded in
7 7 Ref.[29]. Therefore we estimate for K=0.8 by substituting
and finally obtain the derivative of the peri@iwith respect the values of period®(«,7) found numerically for two dif-
to time delayr, ferent, but close, values afinto Eq. (9), and resolving the
system of two equations with respect to As a result we
obtaink=0.35. As one can see from Fig. 9, the values of the

9:0|=nt= nK - «’ n=0.1.2.. (@) periods® calculated numerically are in a good agreement
with those estimated by formuld0) within a certain range
Expansion of® in a Taylor series yields of parameterr. The evolution of the periods of period-
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0 15 20 25
T

FIG. 9. (Color online Period ® of period-1 orbit(stable or
unstable vs time delayr for () K=0.13; (b) K=0.8; (c) K=2.0.
Black circles denote the perio@ calculated numerically, the five
gray (red onling solid lines show the estimates 6f using Eq.(9)
for n=0,1,2,3,4(from left to righy.

orbits with the change of is illustrated in Fig. 10 where the
estimates of the period® of period-2 and period-4 orbits
using Eq.(10) are compared with their true values.

Note that in Eqs(5)—(10) n is exactly the number of the

PHYSICAL REVIEW E71, 016222(2005

enough to measure the orbit period for two values af the
same values ok in order to estimate the period of any orbit
with period being multiple ofT.

IV. DISCUSSION AND CONCLUSIONS

We have revealed the general structure of the bifurcation
diagram of a system with chaos born through a cascade of
period-doubling bifurcations that is subjected to a delayed
feedback control in the form originally proposed by Pyragas
[6]. The bifurcation diagram is explored in dependence upon
the two feedback parameters: feedback stregtnd feed-
back delayr. The range ofr is chosen to be between 0
(absence of feedbagknd 25(slightly more than four times
the period of the period-1 UPO in the original chaotic sys-
tem). K is investigated in the range<0K < 2.65: within this
range at least one attractor of the system with feedback exists
for all values ofr considered. The selected range of feedback
parameters has allowed us to discover a multileaf self-similar
structure of the bifurcation diagram and to reveal some regu-
larities in the structures of different leaves. Each leaf is de-
fined by the existence of a particular periodic orbit and the
limit sets born as a result of its bifurcations. The general
structure of the leaves and typical bifurcation lines have been
worked out. Several regions of chaos were revealed and the
largest regions of chaos were shown in Fig. 2.

On the linesr=T; and 7=T, the regions of stability of the
period-1 and period-2 orbits are in good agreement with the
analytical predictions of previous works. Relatively small vi-
cinities of these lines are well described by analytical rela-
tions as a function of derived in Ref[29] and generalized

leaf of the general bifurcation diagram of the SyStem beingn the present work for the case of perinderbits |y|ng on

controlled that was described in Sec. Il. Thus ELD) pro-

different leaves of the bifurcation diagram. Namely, the ac-

vides one with the way to classify the periodic orbits in thetya| periods of the periodh orbits stabilized by time delayed

systems subject to delayed feedback. Namely, indede-

feedback depend almost linearly erwithin a certain range

fines the leaf on which the orbit exists, antddescribes the of 7. The areas of the parameter plane where no stable oscil-
number of loops the orbit makes before it closes. From thgations occur, i.e., where an unstable fixed point is stabilized,
practical viewpoint this means that in an experiment it isare found to be in a good agreement with the results of ear-

o

O14

12

0 5 10 15 20 25
T

FIG. 10. (Color online Period ® (a) of period-2 orbit forK
=0.8 and(b) of period-4 orbit forK=2.0 vs time delayr. Black
circles denote periods calculated numerically, grag onling lines
show estimates with the formuld0) at m=2 andn=0,1,2 (from
left to right) for period-2 cycles, and am=4 and n=0,1 for
period-4 cycles.

lier works.

The results of this work allow us to draw the following
conclusions regarding application of delayed feedback to the
system under study.

(i) The larger the period of the orbit, the smaller is the
domain of its stabilization iffK, 7) parameter space.

(ii) The two largest domains of existence in the parameter
plane are the one of a period-1 stable orbit, and the one of the
stable fixed point which is located inside the former. By se-
lecting 7 only 16% less than the period of this orbit, one hits
the domain where solely a fixed point is stable. A& in-
creased, the stability domains of the fixed point shrink
quickly, i.e., the probability of suppressing oscillations at an
arbitrarily selected value df drops dramatically.

(iii ) There are several domains of stability of the period-1
limit cycle: not only in the vicinity of 7=T,, but also for
larger values ofr. However, the stability domain aroun
=T, is the widest in dependence en

(iv) There are several domains of stability of the period-2
cycle: not only in the vicinity ofr=T,, but also for smaller or
larger values ofr.
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(v) By appropriately choosing the feedback parameters, We expect that qualitatively the same results should be
one can stabilize the period-1 orbit with a relatively smallvalid at best for systems with the same type of chaos as in

control force that will vanish completely on the lineT;. the one we have considered.
(vi) Increase of bothr andK leads to severe multistability.
Attracting sets of different leaves change quickly with varia- ACKNOWLEDGMENT

tion of control parameters, so for an arbitrarily chosen pair
(7, K) it is practically impossible to predict the observed This work was supported by DFG in the framework of

behavior of the system. Sfb 555.
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