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We study the effect of time delayed feedback control in the form proposed by Pyragas on deterministic chaos
in the Rössler system. We reveal the general bifurcation diagram in the parameter plane of time delayt and
feedback strengthK which allows one to explain the phenomena that have been discovered in some previous
works. We show that the bifurcation diagram has essentially a multileaf structure that constitutes multistability:
the larger thet, the larger the number of attractors that can coexist in the phase space. Feedback induces a large
variety of regimes nonexistent in the original system, among them tori and chaotic attractors born from them.
Finally, we estimate how the parameters of delayed feedback influence the periods of limit cycles in the
system.
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I. INTRODUCTION

The problem of control of oscillatory behavior is of long
standing. Usually, whenever an irregular, unpredictable mo-
tion occurs in an engineering or technological device, the
need arises to take some action in order to turn it into a
predictable one or to stop any oscillations altogether. With
the progress of nonlinear dynamics, intelligent chaos control
methods have been developed that exploit the existence of
unstable periodic orbitssUPO’sd embedded into chaotic at-
tractorsf1–4g. The general idea is to turn an unstable orbit
into a stable one by applying some small force, and a variety
of ways to do this have been proposed so far. Among the
most prominent ones is the Ott-Grebogi-YorkesOGYd ap-
proach f5g that suggests to wait until the phase trajectory
reaches a sufficiently small vicinity of the target saddle orbit,
and then apply a small feedback force that would push it
towards the orbit along its stable manifold. With all the
beauty of the idea, this approach requires quite a lot of
knowledge about the orbit including its position and stability
properties that are not always straightforward to find in a
real-life situation. A famous approach that is lacking the
above shortcoming but achieves the same goal was proposed
by Pyragasf6g. It uses a delayed feedback in the form of a
signal Fstd that is proportional to the difference between
some functiong of the current system statexstd and of its
statexst−td somet time units ago:

Fstd = g„xstd… − g„xst − td…, s1d

multiplied by a feedback strengthK. If t is precisely equal to
the periodT of the UPO, the orbit may become stable under
the appropriate choice of feedback strengthK. Note that only
the stability properties of the orbit are changed, while the
orbit itself and its period remain unaltered. The conditions
for K for successful control have been thoroughly studied in
Refs.f7–10g. Namely, it has been shown that if the orbit has
an odd number of real Floquet multipliers greater than unity,
the delayed feedback can never stabilize it. Also, for the
orbits that can be stabilized, there is a finite range of values

of K at which the control can be achieved: on the lower
boundary which is always larger than zero the stabilized or-
bit undergoes a period-doubling bifurcation, while on the
upper boundary a torus is born from it. Later, this simple
approach was extended to multiple time delayson=0

` Rn

3Fst−ntd with some memory parameteruRu,1 f11g, which
improves the efficiency of controlf12g. Both schemes have
been applied to a number of real world problems in various
areas of physics, chemistry, and biologyf13–21g. Recent in-
terest has focused upon the application to spatially extended
systems, and a variety of global and local coupling schemes
of the control force have been investigated, e.g., Refs.
f22–26g. Extensions to spatiotemporal filtering have been
used to demonstrate that the efficiency can even be increased
by several orders of magnitudef27,28g. However, in this
work we will restrict ourselves to the simplest control
scheme provided by Eq.s1d.

The Pyragas approach is especially appealing for experi-
mentalists, since one does not need to know anything about
the target orbit beyond its periodT. Note that ift is equal to
T precisely, once the target orbit is reached, the control force
vanishes. That is why this type of control is callednoninva-
sive. However, in an experimental situation the dynamical
equations describing the given oscillations are typically not
known, and the period of the target orbit may be estimated
using a kind of spectroscopy approach: one applies the feed-
back with values oft from a substantially large range, and
estimates the control forceF for eacht. If t is close to the
period of the UPO, the absolute value of control forceF
averaged over time approaches zero. Of course, due to the
finite resolution int, the control force will never vanish, and
the accuracy of the thus determined value of the periodT
depends upon the sampling resolution of thet range. It has
been shown numerically, however, that ift is not equal, but
close enough toT, the orbit changes both its shape and pe-
riod. In Ref. f29g a method was proposed to find a better
estimate forT from the knowledge of the periods of the
stable periodic orbits at two different values oft. The
method works well if the two values oft, which are chosen
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by an initial guess, are close enough toT, but its accuracy
decreases if they are far fromT. Interestingly, already in Ref.
f6g it has been reported that delayed feedback can suppress
oscillations and also induce multistability for sufficiently
largeK.

The existing works on delayed feedback control generally
analyze two complementary cases:sid K is fixed while t is
changed, orsii d t=T is fixed whileK is changed. In spite of
the large number of works on delayed feedback control that
reveal a variety of phenomena in systems being controlled,
the general bifurcation scenarios realized under variation of
feedback parameters are still unknown even for the simplest
low-dimensional chaotic systems and the simplest form of
feedback. One of the practical goals of the current work is to
assess the accuracy with which it is sufficient to know the
target orbit periodT to allow for successful control. We
would also like to find out how the range of allowedt de-
pends onK: we suggest that a suitably chosenK can broaden
the allowedt range. Exploration of how oscillations can be
damped would be potentially useful in engineering applica-
tions. For this purpose we study the response of a chaotic
system to the delayed feedback with parametersK and t
varying in quite large ranges. We perform a systematic bifur-
cation analysis of the system with delay and find the regions
of periodic, quasiperiodic, and chaotic motion, as well as
those where oscillations are absent, and the regions of mul-
tistability.

II. SURVEY OF THE BIFURCATION DIAGRAM

We use the Rössler model as a paradigmatic chaotic sys-
tem to which we apply delayed feedback control. It exhibits
chaotic oscillations born via a cascade of period-doubling
bifurcations:

ẋ = − y − z− Kfxstd − xst − tdg,

ẏ = x + ay,

ż= b + zsx − md, s2d

considered at the parameter valuesa=0.2,b=0.2,m=6.5. All
quantities used in this paper are dimensionless. WithK=0, at
these parameters the attractor of the system is represented in
Fig. 1 by dots. Unstable periodic orbits with periodsT1
<5.916 79s“period-1 orbit”d andT2<11.828 14s“period-2
orbit”d that are embedded into the chaotic attractor are shown
by gray and blacksred and black onlined lines, respectively.
In Fig. 2 we display a bifurcation diagram in terms of the
parameterst andK; the linest=T1 andt=T2 are depicted by
vertical dash-dotted lines. Application of the delayed feed-
back with t=T1 and 0.24,K,2.3 stabilizes the period-1
orbit, and it becomes the only attractor of the system. In Ref.
f9g it has been predicted analytically by a linear expansion
that control is realized only in a finite range of the values of
K: at the lower control boundary the limit cycle should un-
dergo a period-doubling bifurcation, and at the upper bound-
ary a Hopf bifurcation generating a stable or an unstable
torus from a limit cyclesNeimark-Sacker bifurcationd. Al-

though the linear expansion becomes exact only for a special
coupling of the control force in the form of a unity matrix
sdiagonal couplingd, this general bifurcation behavior has
been numerically verified in a large number of diverse de-
layed feedback control systems including spatially extended
reaction-diffusion systemsf23–25g. The feedback scheme we
use in Eqs.s2d is nondiagonal, but in qualitative agreement
with Ref. f9g, at K<0.24 the stable limit cycle undergoes a
period-doubling bifurcation, and atK<2.3 a Neimark-
Sacker bifurcation.

In Fig. 2 the hatched area touching the coordinate axes
approximately outlines the region of chaos born through a
cascade of period-doubling bifurcations of the main period-1
cycle that is born via a Hopf bifurcation at the borderlines of
the closed loops marked as black areas. In other words, the
delayed feedback leads to a cascade of inverse period-
doubling bifurcations of chaos ast is increased from zero for
a visible range of fixedK, or asK is increased from zero for
most values oft from the range investigated.

It was first mentioned in Ref.f6g, and later illustrated in
more detail, e.g., in Refs.f30,31g, that delayed feedback can-
not only stabilize the originally unstable periodic orbit, but
also, with the appropriate choice oft andK, induce the in-
verse Hopf bifurcation of this orbit, thus suppressing oscil-
lations in the system altogether. The same phenomenon oc-
curs in Eqs.s2d. In Fig. 2 black shaded loops show the
stability domains of the fixed point close to the origin of
phase space, which forK=0 and the parametersa,b,m cho-
sen is an unstable saddle focus with approximate eigenvalues
l1,2=a/2± i andl3=−m. That is, inside the black regions no
oscillations occur. Note that the largest such region is situ-
ated to the left of, and quite close to, the linet=T1. The
loops containing the stable fixed point form a self-similar
structure in thesK ,td parameter plane, and decrease in size
ast grows, in full agreement with Refs.f30,31g.

The thick black solid lines in Fig. 2 forming loops are the
lines of Hopf bifurcation at which a periodic orbit is born.
The bifurcation diagram has a multileaf structure, and the
borderlines of different leaves are formed by the segments of
Hopf bifurcation lines according to the rule illustrated by
Fig. 3. Each leaf is defined as being the one on which the
same periodic orbit of period one and all attractors born from
it exist and undergo bifurcations. In Fig. 4 it is illustrated

FIG. 1. sColor onlined Dots: chaotic attractor of Rössler system
Eq. s2d without delayed feedbacksK=0d, gray line sred onlined:
period-1 unstable periodic orbit, black linesblack onlined: period-2
unstable periodic orbit.
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how a leaf is determined for a particular value ofK. The
sizes of period-1 orbits, quantified by the differencesxmax
−xmin of thex variable, are shown vst for three values ofK
indicated in the figure. Each orbit has zero size when it is
born sdiesd via Hopf bifurcation on the left-handsright-handd
border of the leaf. The range of the orbit existence defines
the leaf. Shaded areas mark the stability of each orbit. The
particular periodic orbit and associated attractors do not exist
outside their respective leaf.

Although all relevant bifurcation lines are shown in Fig.
2, the complexity of the diagram may make it difficult to
associate each line with the appropriate leaf. For easier visu-
alization we cut out the different leaves and show them sepa-
rately in Fig. 5, where shadedsgreen onlined areas do not
belong to the leaf considered. Since all leaves merge for
small K, the cutting of separate leaves is done along the
arbitrarily selected vertical lines on the diagram that pass
through the lowest points of the loops of Hopf bifurcation
lines.

From Fig. 3 it is clear that for largeK different leaves
overlap, and multistability occurs. For the clarity of descrip-
tion it is convenient to number the leaves. We assign number
0 to the leaf that is not complete, i.e., whose left-hand bound-
ary is formed by the axist=0. Leaf 0 has the simplest struc-
ture. Namely, on the line of Hopf bifurcation a periodic orbit
of period one is born from the fixed point. It is born stable in
the lower part of the diagram and unstable above the point at
which the Hopf bifurcation line intersects itselfswhite circle
in Figs. 2 and 5d. From the latter point a line of subcritical
Neimark-Sacker bifurcation emergessshown by a solid gray
line in Figs. 2 and 5, leaf 0d: as it is crossed from below to
above, the unstable periodic orbit acquires stability. With
this, as this line is crossed from above to below, the limit
cycle loses its stability, but no stable torus is born from it. As
the point in the parameter plane moves towards the axest
=0 and/orK=0, the stable limit cycle undergoes a period-
doubling bifurcation. A cascade of period-doubling bifurca-
tions leads to the birth of a chaotic attractor which att=0 or

FIG. 2. sColor onlined Bifurcation diagram of the Rössler system with delayed feedback in the plane of feedback parameters: time delay
t and feedback strengthK. Bifurcation lines of all leaves are shown. A scheme of the leaf structure is given in Fig. 3. For bifurcations on
separate leaves see Fig. 5. Black areas mark the existence of a stable fixed point, which never coexists with any other attractors. Black solid
lines mark Hopf bifurcations of the fixed point, at which a periodic orbitsstable or unstabled is born. White circles mark points of
self-intersection of Hopf bifurcation line. On graysred onlined solid lines an unstable limit cycle acquires stability via a subcritical
Neimark-Sacker bifurcation. On graysred onlined dashed lines a stable torus is born from the stable limit cycle via a supercritical Neimark-
Sacker bifurcation. Dotted lines show period-doubling bifurcations of stable limit cycles. On dash-double-dotted lines the attractors undergo
crises and cease to exist. Hatched areas denote chaos born as a result of period-doubling bifurcations or of smoothness loss by the invariant
torus.

DELAYED FEEDBACK CONTROL OF CHAOS:… PHYSICAL REVIEW E 71, 016222s2005d

016222-3



K=0 becomes the attractor of the systems2d without feed-
back shown in Fig. 1 by dots. An important feature of this
leaf is that at largeK on the dash-double-dotted line the limit
cycle vanishes through a crisis, and the trajectory abruptly
goes to infinity. Thus above the crisis line there are no at-
tracting sets on this leaf.

To all other leaves we assign positive integer numbers 1,
2, 3, 4, etc. Although different leaves have generally different
structures, they possess some common features. The periodic
orbit is born stable below the point at which the Hopf bifur-
cation line intersects itselfswhite circles in Figs. 2 and 5d,
and unstable above this point. From the latter point a sub-
critical Neimark-Sacker bifurcation line emergessgray solid
line in Figs. 2 and 5d, that being crossed in the direction
towards the leaf center renders the originally unstable peri-
odic orbit stable. As one moves deeper inside the leaf, the
stable periodic orbit undergoes one of two bifurcations: su-
percritical Hopf bifurcation that leads to the birth of a stable

two-dimensional torussgray dashed line in Figs. 2 and 5d, or
period-doubling bifurcationsdotted lined. It may happen that
the line ofsubcritical Neimark-Sacker bifurcation is contin-
ued as, or crossed by, a line ofsupercriticalNeimark-Sacker
bifurcation, as happens close to both borders of leaves 1 and
3, to the right-hand border of leaf 2, and to the left-hand
border of leaf 4.

While bifurcations of fixed points and periodic orbits
were detected by means of continuation toolsf32g, transfor-
mations of objects with higher dimensions were detected by
observation of their Poincaré maps that were calculated from
the conditionẋ=0. The structure of the Rössler equations is
such that all trajectories on the attractors considered cross the
plane defined by the above equation. In uncertain cases we
also calculated Fourier power spectral densities from the
variablexstd.

Generally, as one moves deeper inside the leaf, a stable
two-dimensional torus appears, being born from a period-1
limit cycle as in leaves 1 and 3, or from a period-2 cycle as
in leaf 2, or from a period-4 limit cycle as in leaf 4. Hence
large portions in the centers of all leaves are the domains of
existence of a two-dimensional torus. With this, as param-
eters are changed inside the latter domains, the two-
dimensional torus may undergo various bifurcations, e.g., an-
other Neimark-Sacker bifurcation leading to the birth of a
three-dimensional torus, torus doublingssometimes a cas-
cade of torus doublingsd, and merging of torus bandsse.g.,
for tori born from a period-2 or period-4 orbitd. A torus can
become resonant, i.e., visible in the Poincaré map as the
appearance of a discrete number of points in place of a
closed circle. However, most commonly, the torus loses its
smoothness, breaks down, and turns into a chaotic attractor.
Because there are currently no numerical methods available
that would allow continuation of objects more complex than
periodic orbits in systems with delay, all bifurcations of tori
were detected by visual inspection of Poincaré maps accom-
panied by calculation of Fourier power spectral densities
where necessary. An example of this is given in Fig. 6 where
the transition from a smooth torus to chaos is illustrated for
leaf 2. We fixt at 13.5 and gradually increaseK from 0.74 to
0.78. In Fig. 6 Poincaré sections are shown for three values
of K together with the Fourier power spectral densityS. One
can see that the two-dimensional torus visualized by a
period-4 invariant closed curve in the Poincaré section
breaks down giving birth to a chaotic attracting set. This is
confirmed by the power spectrumS, which at K=0.74 is
discrete within the numerical accuracy, atK=0.76 becomes
enriched by discrete components and atK=0.78 becomes
continuous. The transition from a discrete to continuous
spectrum is clearly visible as small spectral peaks are wid-
ened substantially.

The lines of bifurcations of tori are quite dense in the
parameter plane, and it is impossible to reveal them all
within reasonable computational effort. For this reason, in
this work we only outline the largest domain of chaos born
via torus breakdown that was found on leaf 2shatched area
in Fig. 5d. On leaf 1 the stable two-dimensional torus under-
goes bifurcations only approximately in the upper fifth of the
diagram snot illustratedd. On other leaves the chaotic do-
mains were relatively narrow.

FIG. 3. sColor onlined Sketch of multiple leaf structure of bifur-
cation diagram of systems2d on the parameter planesK ,td. Letters
“FP” mark the stability regions for the only fixed point of system
s2d.

FIG. 4. sColor onlined Illustration of how the leaves of the bi-
furcation diagram are formed. In each plot the spread of thex vari-
ablexmax−xmin as a measure of the size of the period-1 orbit vst is
given for a value of feedback strengthK that is indicated to the right
of the plot. The width of the leaf int is defined by the range oft
where the particular orbit has a nonzero size. Inside the shaded
areas the orbit is stable.
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Importantly, although each leaf is defined by the existence
of a particular periodic orbit, the attracting sets do not exist
in the whole area of the leaf. E.g., obviously, there are no
attractors in the areas between Hopf and subcritical Neimark-
Sacker bifurcationsssolid black and solid gray lines in Fig.
5d, because the just born periodic orbit is unstable there and
does not create any other attractors yet. With this, the attract-
ing sets that are born through local bifurcations of the peri-
odic orbit can undergo crises as the parameters are changed,
and the phase trajectory jumps to one of the coexisting at-

tractors. The lines of crises are shown by dash-double-dotted
lines in Figs. 2 and 5.

In particular, the line of crisis of the two-dimensional
torus of leaf 1 roughly follows the Hopf bifurcation line: as
one approaches the crisis line from the left, the torus diam-
eter becomes very small as if the torus is about to undergo an
inverse supercritical Neimark-Sacker bifurcation. But the lat-
ter does not happen and instead the torus disappears abruptly.

In leaf 2 the chaotic attractor vanishes through a crisis on
two lines that we managed to reveal by numerical simula-

FIG. 5. sColor onlined Separate leaves of the bifurcation diagram of the Rössler system with delayed feedbacksshown in full in Fig. 2d.
Shaded graysgreen onlined areas do not belong to the respective leaf. Lines are denoted in the same way as in Fig. 2.

FIG. 6. sColor onlined Illustration of torus
breakdown as a transition to chaos in the Rössler
system with delayed feedback on leaf 2 of the
bifurcation diagramsFig. 5d. Poincaré maps of
attractors and their respective Fourier power
spectral densityS calculated fromxstd are given
for three values ofK at t=13.5. Each panel illus-
trates a particular value ofK.
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tion. As the line that is oriented mostly vertically is crossed,
the phase trajectory jumps on the attractor of leaf 3. This line
was not extended above the upper point shown since there
was no crisis detected for the slightly larger values ofK
checked. As the upper line is crossed, the phase trajectory
jumps on the attractors of leaf 1. This line was also not
extended beyond the limits shown because of the numerical
uncertainties that occurred in the regions investigated.

Also, attractors of all leaves undergo some crisis atK
close to, or immediately above, the upper line of the Hopf
bifurcation sright-hand border of leaf 0d at t larger than 10.
This crisis is detected in numerical simulation as follows:
starting from an attractor of a certain leaf, as one increasesK,
this attractor abruptly vanishes and the trajectory jumps to
the attractor of the preceding leaf. AsK is increased further,
the current attractor vanishes again. This is repeated until
leaf 0 is reached. AsK is increased further, the attractor of
leaf 0 vanishes and the trajectory goes to infinity.

In order to reconstruct the actual bifurcation diagram, one
can cut out separate leaves from Fig. 5 leaving out the
shaded areas, and glue leaves with consecutive numbers to-
gether: leaf 1 should be glued to leaf 0 from the right, leaf 2
to leaf 1, etc.

In order to illustrate multistability and the change of re-
gimes along the parameter plane, we plot three one-
parameter bifurcation diagrams along the linesK=0.13, K
=0.8, K=2.0. Points of the projections of the Poincaré map
onto variablex are plotted versust, as t is first increased
from 0 to 25 supper panels in Fig. 7d, and then decreased
from 25 to 0slower panels in Fig. 7d. Vertical dotted lines are
put at the values oft at which jumps between different

leaves occur. The same line embraces both the upper and the
lower plot for the same value ofK in order to emphasize that
jumps occur at different values oft depending on whethert
is being increased or decreased. The larger the value ofK is,
the larger the gaps int between these jumps are.

Also, for potential applications it is interesting how the
magnitude of the control force depends on the feedback pa-
rameters. We define the control forceF=F as

Fstd = xstd − xst − td s3d

and calculate the mean valuekFl and the variancekF2l
−kFl2 of this variable through averaging over the observation
time. The mean value of the control forcekFl is zero within
numerical accuracy. The plots of the variancekF2l of the
control force vst for three values ofK are shown in Fig. 8:
black lines showkF2l calculated ast was increased from
zero to 25, and shaded areas showkF2l calculated ast was
decreased from 25 to zero. Hysteresis is clearly visible in
these plots, and is due to overlapping of different leaves of
the bifurcation diagram. Segments of finite length wherekF2l
is zero represent the stability domains of the fixed point.
Points at whichkF2l reachessor tends tod zero are those at
which t coincides with some accuracy with the periods of
period-1sat K=0.8 andK=2.0d or period-2sat K=0.13d un-
stable periodic orbits in the original systems2d that are
marked by vertical dash-dotted lines. One can see that the
control force is small in quite large vicinities of these points.
Note that with those three arbitrarily selected values ofK we
were unable to find orbits whose stability domains in our
bifurcation diagram are very small and are not shown, like

FIG. 7. One-parameter bifur-
cation diagrams of systems2d, il-
lustration of multistability: for
each fixedK, t is first increased
from zero to 25 and then de-
creased from 25 to zero.sad, sbd
K=0.13; scd, sdd K=0.8; sed, sfd
K=2.0.

FIG. 8. sColor onlined Variance of control
forceF defined by Eq.s3d vs t for three different
values ofK: sad, sbd K=0.13;scd, sdd K=0.8; sed,
sfd K=2.0. For each fixed value ofK, t is first
increased from zero to 25sblack lined and then
decreased from 25 to zerosshaded gray, green
onlined. Multistability is clearly visible.
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period-3 and period-4 orbits. This spectroscopy approach has
been proposed in Ref.f6g for the use in experiments in order
to estimate the periods of unstable orbits. However, Fig. 8
illustrates that in the presence of multistability that is inevi-
tably induced by delayed feedback, an arbitrary selection of
feedback strengthK does not allow one to reveal all orbits.
To reveal all orbits, one should in fact scan the system in a
wide range ofK.

We note that although one can in principle stabilize a
period-3 periodic orbit whose period isT3<18 and thus falls
within thet limits we consider, the range of its stability over
both K and t is very small, and we do not show it in this
work.

III. ESTIMATION OF PERIODS OF LIMIT CYCLES

In practice it is often desirable to know in advance the
outcome of application of delayed feedback to the particular
system. That includes the knowledge of the period of the
resulting stable orbit. In order to estimate how the param-
etersK andt of delayed feedback influence the period of this
orbit, we use an approach suggested in Ref.f29g, where the
following relationship for the resulting limit cycle of period
QsK ,td in the system with delayed feedback has been de-
rived:

uk]tQut=T + TK]tust/Qdut=T = 0. s4d

Here the operator]t denotes the derivative with respect tot.
k is a system parameter characterizing the effect of the con-
trol force on the system dynamics, which does not depend on
K andt for a given controlled orbit.T denotes the period of
the unperturbed orbit atK=0. Following the derivation in
Ref. f29g, one can show that all statements obtained there for
t=T remain valid also fort=nT wheren is a non-negative
integer. The argument is that if the initial conditions are set
precisely on the orbit with periodT, the control forceFstd
=xstd−xst−td is zero for anyt=nT. Hence we can rewrite
Eq. s4d as

uk]tQut=nT + TK]tust/Qdut=nT = 0, n = 0,1,2… s5d

or as

uk]tQut=nT + TKUS 1

Q
DU

t=nT
− TKUS t

Q2]tQDU
t=nT

= 0,

n = 0,1,2…. s6d

Taking into account thatQsK ,nTd=T, we find

uk]tQut=nT + uK − nK]tQut=nT = 0, n = 0,1,2…,

and finally obtain the derivative of the periodQ with respect
to time delayt,

u]tQut=nT =
K

nK − k
, n = 0,1,2…. s7d

Expansion ofQ in a Taylor series yields

QsK,td = uT + ]tQut=nTst − nTd + O„st − nTd2
…,

n = 0,1,…. s8d

In this relationship we keep only the linear term and substi-
tute Eq.s7d to obtain an approximate formula for the period
of the delay-influenced orbit:

QsK,td < T +
K

nK − k
st − nTd, n = 0,1,2…. s9d

Thus, in order to find the period of the controlled orbit, be-
sides the control parametersK andt one needs to know also
the period of the unperturbed orbitT and the parameterk
that characterizes the integral effect of the feedback on the
system that does not depend onK andt for the given orbit.
If T could be somehow revealed from the response of the
system to delayed feedback over a wide range of values oft
f6g, the calculation ofk appears to be a difficult problem
f29g. Moreover, for each new orbit this parameter will be
different. However, the situation is a bit simplified by the
observation that if an orbit of periodT is characterized by a
parameterk=k1, then the parameter for the orbit of period
mT, m=1,2,…, will be km=k1/m. This feature ofk follows
from Eq. s4d and the definition of the functionQsK ,td, ac-
cording to whichQsK ,Td=QsK ,mTd=T. Using the above
statement allows one to generalize the formulas9d to the case
of period-m orbits:

QsK,td < mT+
K

nK − k/m
st − nmTd,

n = 0,1,2,…, m= 1,2,…, s10d

whereT andk correspond to the period-1 orbit. We note that
the orbit with period precisely equal tomTmight not exist in
the original system. However, it is very likely that some
orbits with periods close tomT do exist, and thus we expect
that the derived relationship holds approximately.

To check the formulas10d we numerically calculate peri-
ods of different orbits for a variety of values ofK and t.
First, we estimate the periodT of the period-1 orbit without
control. In our case it appears to beT<5.916 79. In Fig. 9
the dependences of periods of period-1 orbitssthat can be
stable or unstabled on time delayt are presented for three
different values ofK. Black circles show the periods esti-
mated numerically for period-1 orbits from different leaves
of the bifurcation diagramsFigs. 2 and 5d. Periods calculated
using formulas10d are denoted by graysred onlined lines.
With this, different lines were found for different values of
n=0,1,2,3,4. As it was mentioned above, the parameterk is
not easy to find using the analytic expressions provided in
Ref. f29g. Therefore we estimatek for K=0.8 by substituting
the values of periodsQsk ,td found numerically for two dif-
ferent, but close, values oft into Eq. s9d, and resolving the
system of two equations with respect tok. As a result we
obtaink<0.35. As one can see from Fig. 9, the values of the
periodsQ calculated numerically are in a good agreement
with those estimated by formulas10d within a certain range
of parametert. The evolution of the periods of period-m
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orbits with the change oft is illustrated in Fig. 10 where the
estimates of the periodsQ of period-2 and period-4 orbits
using Eq.s10d are compared with their true values.

Note that in Eqs.s5d–s10d n is exactly the number of the
leaf of the general bifurcation diagram of the system being
controlled that was described in Sec. II. Thus Eq.s10d pro-
vides one with the way to classify the periodic orbits in the
systems subject to delayed feedback. Namely, indexn de-
fines the leaf on which the orbit exists, andm describes the
number of loops the orbit makes before it closes. From the
practical viewpoint this means that in an experiment it is

enough to measure the orbit period for two values oft at the
same values ofK in order to estimate the period of any orbit
with period being multiple ofT.

IV. DISCUSSION AND CONCLUSIONS

We have revealed the general structure of the bifurcation
diagram of a system with chaos born through a cascade of
period-doubling bifurcations that is subjected to a delayed
feedback control in the form originally proposed by Pyragas
f6g. The bifurcation diagram is explored in dependence upon
the two feedback parameters: feedback strengthK and feed-
back delayt. The range oft is chosen to be between 0
sabsence of feedbackd and 25sslightly more than four times
the period of the period-1 UPO in the original chaotic sys-
temd. K is investigated in the range 0,K,2.65: within this
range at least one attractor of the system with feedback exists
for all values oft considered. The selected range of feedback
parameters has allowed us to discover a multileaf self-similar
structure of the bifurcation diagram and to reveal some regu-
larities in the structures of different leaves. Each leaf is de-
fined by the existence of a particular periodic orbit and the
limit sets born as a result of its bifurcations. The general
structure of the leaves and typical bifurcation lines have been
worked out. Several regions of chaos were revealed and the
largest regions of chaos were shown in Fig. 2.

On the linest=T1 andt=T2 the regions of stability of the
period-1 and period-2 orbits are in good agreement with the
analytical predictions of previous works. Relatively small vi-
cinities of these lines are well described by analytical rela-
tions as a function oft derived in Ref.f29g and generalized
in the present work for the case of period-m orbits lying on
different leaves of the bifurcation diagram. Namely, the ac-
tual periods of the period-m orbits stabilized by time delayed
feedback depend almost linearly ont within a certain range
of t. The areas of the parameter plane where no stable oscil-
lations occur, i.e., where an unstable fixed point is stabilized,
are found to be in a good agreement with the results of ear-
lier works.

The results of this work allow us to draw the following
conclusions regarding application of delayed feedback to the
system under study.

sid The larger the period of the orbit, the smaller is the
domain of its stabilization insK, td parameter space.

sii d The two largest domains of existence in the parameter
plane are the one of a period-1 stable orbit, and the one of the
stable fixed point which is located inside the former. By se-
lectingt only 16% less than the period of this orbit, one hits
the domain where solely a fixed point is stable. Ast is in-
creased, the stability domains of the fixed point shrink
quickly, i.e., the probability of suppressing oscillations at an
arbitrarily selected value ofK drops dramatically.

siii d There are several domains of stability of the period-1
limit cycle: not only in the vicinity oft=T1, but also for
larger values oft. However, the stability domain aroundt
=T1 is the widest in dependence ont.

sivd There are several domains of stability of the period-2
cycle: not only in the vicinity oft=T2, but also for smaller or
larger values oft.

FIG. 9. sColor onlined Period Q of period-1 orbit sstable or
unstabled vs time delayt for sad K=0.13; sbd K=0.8; scd K=2.0.
Black circles denote the periodQ calculated numerically, the five
gray sred onlined solid lines show the estimates ofQ using Eq.s9d
for n=0,1,2,3,4sfrom left to rightd.

FIG. 10. sColor onlined Period Q sad of period-2 orbit forK
=0.8 andsbd of period-4 orbit forK=2.0 vs time delayt. Black
circles denote periods calculated numerically, graysred onlined lines
show estimates with the formulas10d at m=2 andn=0,1,2 sfrom
left to rightd for period-2 cycles, and atm=4 and n=0,1 for
period-4 cycles.
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svd By appropriately choosing the feedback parameters,
one can stabilize the period-1 orbit with a relatively small
control force that will vanish completely on the linet=T1.

svid Increase of botht andK leads to severe multistability.
Attracting sets of different leaves change quickly with varia-
tion of control parameters, so for an arbitrarily chosen pair
st, Kd it is practically impossible to predict the observed
behavior of the system.

We expect that qualitatively the same results should be
valid at best for systems with the same type of chaos as in
the one we have considered.
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